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and, following Campbell (1996) and Jagannathan and Wang (1996), of 
a human capital-augmented CAPM. For each of the models we inves- 
tigate, precisely the same fundamental factors that price assets in tra- 
ditional derivations of the CAPM, the human capital CAPM, and the 
unconditional consumption CAPM are assumed to price assets in this 
approach. The difference is that factors in the stochastic discount factor 
are expected to price assets only conditionally, leading to conditional 
rather than fixed linear factor models. 

The results presented here suggest that previous studies documenting 
the poor empirical performance of both the CAPM and the CCAPM 
-referred to jointly as the (C)CAPM-may have made inadequate al- 
lowances for time variation in the conditional moments of returns. A 
large and growing body of empirical work finds that expected excess 
returns on aggregate stock market indexes are predictable, suggesting 
that risk premia vary over time (see, e.g., Shiller 1984; Campbell and 
Shiller 1988; Fama and French 1988, 1989; Campbell 1991; Hodrick 
1992; Lamont 1998; Lettau and Ludvigson 2001). Yet if risk premia are 
time-varying, parameters in the stochastic discount factor will depend 
on investor expectations of future excess returns. For example, in mod- 
els with habit formation, in which risk premia vary because risk aversion 
varies, the discount factor will be a state-dependent function of con- 
sumption g r ~ w t h . ~  By contrast, traditional versions of the CAPM and 
CCAPM imply that these parameters will be state-independent because 
risk premia are presumed constant. 

To capture variation in conditional moments, we explicitly model the 
dependence of parameters in the discount factor on current-period 
information, as in Cochrane (1996) and Ferson and Harvey (1999).5 
This dependence is specified by interacting, or "scaling," factors with 
instruments that are likely to be important for summarizing variation 
in conditional moments. Campbell and Cochrane (2000) argue that 
such scaled models will perform far better than unscaled models in 
cross-sectional asset pricing tests if habit formation is present. With this 
approach, we may express a conditional linear factor model as an un- 
conditional, multifactor model in which the additional factors are simply 
scaled versions of the original factors. We refer to this version of the 
(C)CAPM as the scabd multifactur model. Scaling factors is one way to 
incorporate conditioning information; here we use the terms "scaling" 
and "conditioning" interchangeably. 

'Pioneering theoretical work in this area includes Sundaresan (1989), Constantinides 
(1990), and Campbell and Cochrane (1999). 

This methodology builds off of the work of Ferson, Kandel, and Stambaugh (1987), 
Harvey (1989), and Shanken (1990), who call for scaling the conditional betas themselves 
(rather than the factors directly) in a cross-sectional linear regression model in which 
market betas are expected to vary over time. 



The choice of conditioning variable in this study is central to our 
approach. The linear factor model we consider is a function of investors' 
conditioning information, which is unobservable. This unobservability 
is an important practical obstacle to testing conditional factor models 
since the econometrician's information set is, at best, a subset of the 
investor's. We argue here, however, that we may largely circumvent this 
difficulty by using a conditioning variable that summarizes investor ex- 
pectations of excess returns. 

To find such a summary measure of investor expectations, we appeal 
to a defining feature of any forward-looking model: agents' own behavior 
reveals much of their expectations about the future. Theories of con- 
sumption behavior provide an excellent example. In a wide class of 
dynamic, optimizing models, log consumption and log aggregate (hu- 
man and nonhuman) wealth share a common stochastic trend (they 
are cointegrated), but they may deviate from one another in the short 
term on the basis of changing expectations of future returns. Accord- 
ingly, the log consumption-wealth ratio summarizes investor expecta- 
tions of discounted future returns to the market portfolio. 

The difficulty with this observation is that the consumption-aggregate 
wealth ratio, specifically the human capital component of it, is not o b  
servable. In a recent paper, Lettau and Ludvigson (2001) find that an 
observable version of this ratio-a cointegrating residual between log 
consumption, c, log asset (nonhuman) wealth, a, and log labor income, 
y (referred to subsequently as cay for short)-has striking forecasting 
power for excess returns on aggregate stock market indexes. In addition, 
unlike other popular forecasting variables (e.g., the dividend-price ra- 
tio), consumption can be thought of as the dividend paid from aggregate 
wealth, so that movements in the consumption-aggregate wealth ratio 
summarize expectations about the entire market portfolio, not just the 
stock market component of it. It follows that cay may have an important 
advantage over other indicators as a scaling variable in cross-sectional 
asset pricing tests. 

In this paper, we undertake a cross-sectional investigation of the scaled 
multifactor (C)CAPM using an updated version of the 25 size and book- 
to-market sorted portfolios constructed in Fama and French (1992, 
1993). We focus on these portfolios because explaining their cross-sec- 
tional return pattern has presented arguably the greatest empirical chal- 
lenge to date for theoretically based asset pricing models such as the 
CAPM and the consumption CAPM.6 These models, unlike the Fama- 

The small-firm effect of Banz (1981) notwithstanding, it is well known that the static 
CAPM is relatively better at explaining the average returns on stock portfolios formed 
according to size (market value) or industry. In addition, Jagannathan and Wang (1996) 
show that a conditional CAPM model does a good job of explaining the cross section of 
returns on portfolios sorted according to size and market betas (covariance with the Center 
for Research in Security Prices [CRSP] value-weighted index). 
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French three-factor model, positively fail to explain the strong variation 
in returns across portfolios in a given size category that differ according 
to book-to-market equity ratios. If the Fama-French factors truly are 
mimicking portfolios for underlying sources of macroeconomic risk, 
there should be some set of macroeconomic factors that performs well 
in explaining the cross section of average returns on those portfolios. 
As yet, however, there is little empirical evidence that macroeconomic 
variables can explain even a small fraction of the variation in these 
returns. 

An important aspect of our results, summarized in figure Id, is that 
the conditional consumption CAPM, scaled by cay, goes a long way 
toward explaining the celebrated "value premium."7 This suggests that 
an asset's risk is determined not by its unconditional correlation with 
the model's underlying factor, but rather by its correlation conditional 
on the state of the economy. The empirical asset pricing literature has 
become embroiled in controversy over whether this observed value pre- 
mium is attributable to phenomena captured by firm characteristics 
(implying a mispricing of value stocks) or to genuine covariance with 
common risk factors (implying that value stocks are rationally priced) .' 
We show that value stocks earn higher average returns than growth 
stocks because they are more highly correlated with consumption growth 
in bad times, when risk premia are high. Thus the results presented 
here demonstrate that an asset's covariance with scaled consumption 
growth can go a long way toward accounting for the value premium, 
thereby lending support to the view that the reward for holding high- 
book-to-market stocks arises at least partly as a consequence of true 
nondiversifiable risk. 

The rest of this paper is organized as follows. In Section I1 we present 
the general conditional factor model that forms the basis of our em- 
pirical work and show how it can be specialized to particular asset pricing 
models. Next we review the theory in Lettau and Ludvigson (2001) 
motivating the use of cay as a scaling variable. Section I11 describes the 
portfolio data and our empirical procedure for testing the (C)CAPM. 
Section IV presents empirical results on the cross section of average 
returns. In that section, we compare the performance of conditional 
factor models in which the return on a value-weighted stock market 
index or consumption growth is the fundamental factor, with the per- 
formance of the simple static CAPM and an unconditional consumption 
CAPM. We also investigate the cross-sectional explanatory power of a 

'The value premium is the welldocumented pattern found in average returns that firms 
with high book-to-market equity ratios have higher average returns than firms with low 
book-to-market ratios in the same market capitalization category. 

This debate is borne out in several recent papers; see, e.g., Daniel and Titrnan (1997), 
Ferson, Sarkissian, and Simin (1999), and Davis, Fama, and French (2000). 



scaled human capital CAPM that includes as factors both the return on 
a value-weighted stock market index and the labor income growth mea- 
sure advocated by Jagannathan and Wang (1996). The performance of 
all these models is compared to that of the three-factor model advocated 
by Fama and French (1993, 1995). We then move on to discuss the 
average pricing errors for each model. We provide intuition for why the 
scaled factor models work better than the unscaled models and show 
that value stocks have higher conditional consumption betas in bad 
times than growth stocks, suggesting that the former are indeed riskier 
than the latter. Tests of the conditional factor models when portfolio 
characteristics such as size and book-to-market ratios are included as 
additional explanatory variables are also discussed. Finally, in Section 
IVG, we present results when scaled returns are added to the set of 25 
size and book-to-market sorted unscaled returns. Section V discusses 
alternative estimation methodologies. Section VI presents conclusions. 

11. Linear Factor Models with Time-Varying Coefficients 

We begin by imposing virtually no theoretical structure, appealing in- 
stead to a well-known existence theorem to motivate our empirical a p  
proach (see Harrison and Kreps 1979). This theorem states that, in the 
absence of arbitrage, there exists a stochastic discount factor, or pricing 
kernel, M,+,, such that, for any traded asset with a net return at time t 
of R,,,,, , the following equation holds: 

where E, denotes the mathematical expectation operator conditional on 
information available at time t, M,+, = a, + b,R,,+,,and Re,,+,is a return 
on the unobservable mean-variance efficient frontier. We refer to models 
of the form M,+, = a,  + b,R,,+,as conditional linear factor rno&k;. Special 
cases of these models with constant coefficients, for example, M,,, = 
a + bR,,+,, will be referred to hereafter as unconditional linear factor 
rno&k;. 

It is straightforward to show that the conditional linear factor model 
given above implies a conditional beta representation given by 

where R , ,  is the return on a "zero-beta" portfolio uncorrelated with 
M,+1, 
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If conditional moments are time-varying, the parameter b, in the sto- 
chastic discount factor will in general not be constant. Although pre- 
dictable movements in volatility may be a source of variation in b,, they 
appear to be more concentrated in high-frequency data (e.g., Chris- 
toffersen and Diebold 2000). Since risk-free interest rates are also not 
highly variable, the denominator of b, is not likely to vary much in 
monthly or quarterly data. On the other hand, a large empirical liter- 
ature (cited in the Introduction) documents that excess returns are 
forecastable. Therefore, asset pricing tests that are implemented using 
monthly or, as in this paper, quarterly data should allow for the possibility 
of time variation in 6,. In this paper we focus on time variation in equity 
premia as a source of variation in b,. 

When MI+, = a,  + b,R,,+, is plugged into (1) and unconditional ex- 
pectations are taken, it is straightforward to demonstrate that the con- 
ditional model in (1) does not necessarily imply an unconditional ver- 
sion in which a, and b, are constants. Following Cochrane (1996), we 
test conditional factor pricing models of the form given above by ex- 
plicitly modeling the dependence of the parameters a, and b, on a time 
t information variable, z,, where z, is a forecasting variable for excess 
returns.' (We discuss our choice of conditioning variable further in the 
next section.) In particular, we may scale the factors with instruments 
containing time t information by modeling the parameters as linear 
functions of z,, a ,  = yo + y,z,, and b, = qo + q,z,. Pluggmg these equa- 
tions into M,+, above allows us to rewrite a conditional linear factor 
model as a scaled multi$actor model with constant coefficients taking the 
form 

It follows that the scaled multifactor model can be tested using uncon- 
ditional moments by rewriting (1) as an unconditional three-factor 
model with constant coefficients yo, y,, qO, and q,  in the form 

'The specification can be easily extended to allow for multiple conditioning variables. 



A. Application of Conditional Factor Pricing to the (C)CAPM 

The derivation above is useful for demonstrating how one can test mod- 
els in which factors price assets conditionally, but the framework itself 
contains little theoretical content. In order to test particular theories, 
we need to place more structure on the discount factor M,,,, and in 
particular on the choice of reference return, R,,. In the (C)CAPM the- 
ories, the true mean-variance efficient reference return may be written 
as a conditional linear combination of relevant fundamental factors, 
where the jth factor is denoted A,. In the Fama and French (1993) 
specification, a vector of factors, f,, contains three portfolio returns. We 
discuss these models, each a special case of the broader class of scaled 
multifactor models, in more detail below. 

To describe the class of scaled multifactor models more comprehen- 
sively, we use vector notation." Denote the vector F,,, = (1, z,, 
f:+], f:+,z,)', or separating out the variable factors z,, f,,,, and f,+,z, and 
denoting these together as f,+,, write F,,, = (1, f,,)'. Mre shall refer to 
f,,, as fundamental factors (e.g., the market return and consumption 
growth). The stochastic discount factor of the scaled multifactor rep- 
resentation for each model can be expressed as M,,, = c1Ft+,, where 
the constant vector c. = (yo,b')', yo is a scalar, and b = (y,, yh, 7:)' is 
the vector of constant coefficients on the variable factors, f,,,. This 
representation for M,,, implies an unconditional multifactor beta rep- 
resentation for asset i with constant betas given by 

where EIRo,,] is the average return on a zero-beta portfolio that is un- 
correlated with the stochastic discount factor (Black 1972), and j3 = 
COV (f, f )  COV(f, R,,,,,) is a vector of regression coefficients from a 
multiple regression of returns on the variable factors. In the empirical 
analysis that follows, we focus on this Black version of the (C)CAPM 
(which does not assume the existence of a risk-free security) and freely 
estimate the constant E[R,,] as part of the cross-sectional model. 

Given (4), it is straightforward to show that 

A = -E[R,,,] Cov (f, fob. (5) 

It is important to note that the individual A, coefficients in (5) from the 
scaled multifactor versions of the (C)CAPM do not have a straightfor- 
ward interpretation as a risk price. To see why, notice that, for each 
scaled multifactor model, there is an associated conditional factor model 
from which the scaled multifactor model is derived. For example, the 
conditional CAPM factor model would be specified M,,, = a,  + 

lo This discussion follows the derivation in Cochrane (1996). 



,,,,(where R 
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b,R,,,,+, +, is a proxy for the market return), from which we 
derive the scaled multifactor model, M,+, = yo + y,z, + qoR,,,, +,+ 
q,(z,R,,,,+,), using the conditioning information, z,. More generally, 
given a conditional linear factor model of the fonn M,,, = 
c:(l, f:,,)', where c, = (a,, b:)', the conditional beta represepption for 
this model is given by analogy to (4) as E,[R,,,+,] = Rg,,+ b:X, where 
R , ,  is again the return on a zero-beta portfolio, @,+,= Cov,(f,+,, 
f:,,) -'Cov, (f,+, , R,,,,,), and A, is the vector of period t risk prices of the 
fundamental factors 

The period t risk prices in (6) bear no simple relation to the coefficients 
A. Moreover, the methodology employed bere (and discussed in more 
detail later) does not produce estimates of A,. Instead, we estimate cross- 
sectional regressions of the form (4), which delivers estimates of A. 
Estimates of X from (5) can be used to uncover b' = 
-X'[EIRo,,] Cov (f, f')] ' ,which we may combine with the definition of 
b, = vo + v l z t  to obtain an estimate of b,. Without making further as- 
sumptions, however, we cannot compute the risk prices for the funda- 
mental factors, A,, because we do not estimate the conditional covari- 
ance, Cov, (f,+,, f:+,), in (6). 

Equation (6) shows that the value of X,, the vector of risk prices for 
each fundamental factor in f,, depends on b,. Our linear specification 
b, = lo+ v l z t  presumes that fluctuations in b, are primarily driven by 
fluctuations in risk premia and implies a linear forecasting equation for 
excess returns. While evidence in Lettau and Ludvigson (2001) suggests 
that these forecasting equations do a good job of picking up fluctuations 
in future excess returns, as with any linear forecasting model, there ar_e 
periods in which the model predicts a negative excess return. Since A, 
inherits the properties of these linear forecasting models, the value of 
A, may change sign from time to time. This aspect of the prediction 
equation is purely a result of the linear regression specification and is 
not unique to the use of any particular forecasting variable, z,. The linear 
forecasting equations we use below do predict a positive risk premium 
on average, however, so that it is reasonable to expect that the average 
risk price on each fungamental factor in the conditional model be 
nonnegative, that is, E[X,] 10. 

However, this condition does not imply that the individual A, coeffi-
cients from the scaled multifactor representation in ( 5 ) should be non- 
negative. In the case of a single-factor model such as the static CAPM, 
the average risk price for the market beta will have the opposite sign 
of the average value of b, (see [6]) and will be positive as long as the 
average risk premium is positive. In this case, the conditional covariance 
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term in (6) will simply be a conditional variance for the value-weighted 
return. For models with multiple factors, the conditional covariance is 
not simply a conditional variance, and the average price of risk need 
not have the opposite sign of the average value of b, if the factors are 
not orthogonal. Nevertheless, if we assume that the conditional covar- 
iance~and the average zero-beta rate in (6) are approximately constant 
and we use the specificatjon b, = q, + q,z, we may compute a value for 
the average risk price, E[X,], of each fundamental factor in the associated 
conditional factor model using (6). For each of the models investigated 
below, we make this assumption and check whether, conditional on it, 
the estimated values of X imply that E[X,] 2 0 .  

We now move on to discuss the special cases of (4) that correspond 
to the particular scaled multifactor asset pricing models of the W M  
and the C W M .  

1. The Consumption CAPM 

Consider a representative agent economy in which all wealth, including 
human wealth, is tradable. Let W, be aggregate wealth (human and 
nonhuman) in period t, C, consumption, and R,,,,, the net return on 
aggregate wealth, or the market portfolio. Subject to an accumulation 
equation for aggregate wealth, investors maximize the present dis-
counted value of instantaneous utility functions, u(C, X,), where C, is 
consumption and X, captures other factors (e.g., a habit level) that may 
influence an investor's utility. The first-order conditions for optimal 
consumption choice are simply special cases of ( I ) ,  where the equation 
holds for every asset in the market portfolio and the discount factor, 
M,,, = 6[u,(Ct+,, X,+,)/u,(C,, X,)], is the intertemporal marginal rate of 
substitution, with 6 the subjective rate of time preference. 

Instead of speclfylng a particular functional form for marpnal utility, 
we assume that M may be approximated as a linear function of con- 
sumption growth: 

where a, and b, are (potentially time-varying) parameters and Ae,,, is 
consumption growth, the single fundamental factor in the asset pricing 
model. Throughout this paper, we use lowercase letters to denote log- 
arithms of variables written in uppercase; for example, e, = In C, In the 
notation above, this specification of the C W M  has a single factor, 

= Act, and time variation in the coefficients is modeled by interacting 
consumption growth with an instrument z, so that F,,, = (I ,  z,, 
Act+,, Ac,+1zt)'. 

Regardless of the particular functional form of the investor's utility 
function, the discount factor can always be expressed as an approximate 
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linear function of consumption growth by taking a first-order Taylor 
expansion of M. Examples include time-separable power utility with 
constant relative risk aversion, u(C,) = C:-Y/(l - y), in which case 
M,+,= 6(1 - yAc,,,), and the coefficients a, and b, in (7) are constant; 
or the habit persistence framework of Campbell and Cochrane (1999), 
u(C,, X,) = (C, - X,) '-?/(I - y), in which case M,,, takes the form 

where X, is the external consumption habit; sf is the log of the surplus 
consumption ratio, defined as St = (C, - X,)/C,; y is a parameter of utility 
curvature; gis the mean rate of consumption growth; 4 is the persistence 
of the habit stock; and X(s,) is the sensitivity function specified in Camp- 
bell and Cochrane. Similar but more complicated expressions can be 
derived for internal habit formation models (e.g., Sundaresan 1989; 
Constantinides 1990) by taking a local linear approximation of the re- 
spective stochastic discount factors. 

To our knowledge, almost all the cross-sectional tests of the CCAF'M 
to date have pertained to models that assume that the parameters a, 
and b, in (7) are constant." Thus they implicitly assume that risk premia 
are constant, a presumption that produces an asset pricing model in 
which consumption growth, Act+,, is the single factor. But a model like 
that in equation (8), in which the parameters a, and b, are not constant, 
will have factors in addition to consumption growth when expressed as 
a scaled factor model. Both the coefficient that multiplies consumption 
growth and the "intercept" in (8) vary over time and are a function of 
the surplus consumption ratio, which governs risk aversion. Although 
these coefficients may be a function of unobservable variables, such as 
X(s,) in (8), their fluctuations should be well captured by suitable proxies 
for time-varying risk premia. In contrast to traditional, discrete-time 
derivations of the conditional CAF'M (e.g., Jagannathan and Wang 
1996), which produces just two betas (one for the fundamental factor 
and one for the risk premium), habit models imply the existence of at 
least one beta for the multiplicative "cross term" of the factor (con- 
sumption growth) and the risk premium. 

2. The CAPM and the Human Capital CAF'M 

A standard derivation of the static CAF'M would require simply replacing 
Act+, in (7) with the return to the market portfolio as the relevant factor, 

"An exception is the model of Ferson and Harvey (1993), who estimate a consumption- 
based asset pricing model using a small cross section of returns including a Treasury bill 
rate, a government bond rate, a corporate bond rate, a value-weighted stock return, and 
the return on an index of small stocks. They use lags of consumption growth and a real 
Treasury bill rate as conditioning variables. 
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A+, = R,,,,,. The market portfolio is typically proxied by the return on 
an index of common stocks, but this practice has been challenged by 
Roll (1977),who argues that such proxies ignore the human capital 
component of aggregate wealth. Following Mayers (1972) and Fama 
and Schwert (1977),  Campbell (1996) and Jagannathan and Wang 
(1996) argue that labor income growth may proxy for the return to 
human capital and find that it has a statistically significant risk price in 
cross-sectional tests of the CAPM. This specification of the CAPM, ex- 
plicitly accommodating human capital, would have two factors, the re- 
turn on a value-weighted stock index, R,,, ,  and labor income growth, 
Ay,, implying that M,,, = a, + b,,,R ,,,+, + b,,,Ay,+,. We refer to this spec- 
ification as the human capital CAPM. To model possible time variation 
of the parameters in M,+,, a scaled multifactor model given by F,,, = 
(1 ,  z,, R,w,t+l, Ay,,,, R ,,,+, z,, Ay,,, z,) ' can be specified in analogy to the 
consumption model outlined above. 

A critical consideration in using the scaled multifactor approach to 
test the (C)CAPM, or any conditional asset pricing model, is the choice 
of conditioning variable, z,. The discussion above suggests that the pa- 
rameters a, and b, will depend on risk premia. Thus we seek a scaling 
variable that provides a summary measure of expected excess returns. 
The next subsection describes our choice of conditioning variable, a 
proxy for the log consumption-wealth ratio, and discusses how it fur- 
nishes such a summary by providing a brief overview of the results in 
Lettau and Ludvigson (2001). 

B. The Conditioning Variable 

Why use the consumption-wealth ratio as a conditioning variable? First, 
in a wide class of forward-looking models, the consumption-aggregate 
wealth ratio summarizes agents' expectations of future returns to the 
market portfolio. Thus the variable captures expectations without re- 
quiring the researcher to observe information sets directly. Second, as 
Cochrane (2001, chap. 8) emphasizes, the CAPM can be derived from 
several special cases of the CCAPM. These special cases also often imply 
that the parameters in the stochastic discount factor of the CAPM (i.e., 
a, and b, in M,,, = a, + b,R,w,,+l)will be a function of the consump 
tion-aggregate wealth ratio. It follows that the consumption-aggregate 
wealth ratio may play a special role in both the CAPM and the CCAPM 
when they are specified as linear factor models with time-varying 
coefficients. 

To show that the consumption-aggregate wealth ratio summarizes 
agents' expectations of future returns, make a loglinear approximation 
to a representative investor's intertemporal budget constraint, w,, = 
(1  + R,,,+,)(& - C,),and the log consumption-wealth ratio may be ex- 
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pressed in terms of future returns to the market portfolio and future 
consumption growth. (A full derivation of this approximation is given 
in App. A.) Because this approximate equation holds merely as a con- 
sequence of the agent's intertemporal budget constraint, it holds ex 
post, but it also holds ex ante. Accordingly, the log consumption-wealth 
ratio may be expressed as" 

Equation (9) implies that, if the conditional expectation of con-
sumption growth is not too volatile (something that appears to be true 
empirically), the log consumption-wealth ratio summarizes expecta- 
tions of future returns to the market portfolio. The specification in (9) 
is directly analogous to the linearized formula for the log dividend-price 
ratio (Campbell and Shiller 1988), where consumption enters in place 
of dividends and wealth enters in place of price. If the consumption- 
wealth ratio is high, then the agent must be expecting either high re- 
turns on wealth in the future or low consumption growth rates. The 
key difference between the consumption-wealth ratio and the dividend- 
price ratio is what is on the right-hand side: in (9) it is the return to 
the entire market portfolio and consumption growth; for the dividend- 
price ratio it is the return to the stock market component of wealth and 
dividend growth. 

Of course, the log consumption-aggregate wealth ratio is not ob- 
servable because human capital is not observable. To overcome this 
obstacle, Lettau and Ludvigson (2001) reformulate the bivariate coin- 
tegrating relation between c and w in (9) as a trivariate cointegrating 
relation involving three observable variables, namely log consumption, 
c, log nonhuman or asset wealth, a, and log labor earnings, y. Such a 
reformulation is possible under the condition that labor income is in- 
tegrated and the rate of return to human capital is stationary. With these 
assumptions, the log of human capital, h,, may be written as h, = K + 
y, + u,, where K is a constant and u, is a mean zero stationary random 
variable. This formulation for h, may be rationalized by a number of 
different specifications linking labor income to the stock of human 
capital.13 

With this assumption, we are now in a position to express the log 
consumption-aggregate wealth ratio in terms of observable variables. 

l 2  We omit unimportant linearization constants in linearized equations. 
l3  One such specification models aggregate labor income as the dividend paid from 

human capital, as in Campbell (1996) and Jagannathan and Wang (1996).In this case, 
the return to human capital is defined as R,,,,,= (H,,, + Y,+,)/H,,and a loglinear a p  
proximation of R,,+,implies that v, = E,C7=,pi(Ay,+,+,- r,,,,,,,). 
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Let A, be nonhuman, or asset, wealth. Aggregate wealth is therefore 
@ = A, + H, and log aggregate wealth may be approximated as w, = 
oa, + (I  - o)h,, where w equals the average share of nonhuman wealth 
in total wealth, A/W With this approximation, the left-hand side of (9) 
may be expressed as the difference between log consumption and a 
weighted average of log asset wealth and log labor income: 

cay, = c, - oa, - (1 - o)y, 

Because all the variables on the right-hand side of (10) are stationary, 
the model implies that consumption, asset wealth, and labor income 
share a common stochastic trend (they are cointegrated), with w and 
1 - o parameters of this shared trend. As long as the last term on the 
right-hand side is not too variable, this equation implies that the ob- 
servable quantity on the left-hand side should be a good proxy for the 
log consumption-aggregate wealth ratio and therefore expected re-
turns. Lettau and Ludvigson (2001) present evidence that cay, is a strong 
predictor of excess stock returns on aggregate stock market indexes. 

An important task in using the left-hand side of (10) as a scaling 
variable is the estimation of the parameters in cayr Lettau and Ludvigson 
discuss how these parameters can be estimated consistently and why 
measurement considerations suggest that the coefficients on asset wealth 
and labor income may sum to a number less than one. The reader is 
referred to Lettau and Ludvigson (2001) for details on data construction 
and data definition and for a description of the procedure used to 
estimate o and 1 - o.14 We simply note here that we obtain an estimated 
value for cay,, denoted @, = c,* - 0.31~:- 0.59~:- 0.60, where starred 
variables indicate measured quantities.15 We use this estimated value as 
a scaling variable in our empirical investigation. 

I 4  The data used for the estimation of cay, are quarterly, seasonally adjusted, per capita 
variables, measured in 1992 dollars. The consumption data pertain to nondurables and 
services excluding shoes and clothing in 1992 chain-weighted dollars. The nonhuman 
wealth data are the household net worth series provided by the Board of Governors of 
the Federal Reserve System. Labor income is defined as wages and salaries plus transfer 
payments plus other labor income minus personal contributions for social insurance minus 
taxes. Taxes are defined as [wages and salaries/(wages and salaries + proprietors income 
with IVA and Ccadj + rental income + personal dividends + personal interest in- 
come)] x (personal tax and nontax payments), where IVA is inventory evaluation and 
Ccadj is capital consumption adjustments. Both the net worth variable and the labor 
income variable are deflated by the personal consumption expenditure chain-type price 
deflator. All variables are given in per capita terms. 

l5 The parameters in Z@, are estimated in a first-stage time-series analysis using only 
consumption, asset wealth, and labor income, and they are completely unrelated to the 
cross-sectional data on portfolio returns. 
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111. Econometric Specification and Tests 

We use the beta representation (4) as the basis of our empirical work, 
specialized to the particular asset pricing model under consideration. 
In this section, we examine whether scaled specifications of the CAPM, 
the human capital CAPM, and the consumption CAPM (jointly, the 
(C)CAPM) can explain the cross section of expected returns with the 
conditioning variable, z,, equal to GrIn each case, the scaled multi- 
factor beta representation (4) nests an associated unconditional model 
in which the p's on the scaling variable and on the scaled factors are 
zero. We compare the ability of all these models to explain the cross 
section of average returns with that of the three-factor model in Fama 
and French (1993). In addition, we follow the suggestion in Jagannathan 
and Wang (1998) to include firm size (market equity) and book-to- 
market characteristics as additional explanatory variables as a test for 
model misspecification. We also test the (C)CAPM models using two 
alternative sets of portfolios that include scaled returns. We briefly dis- 
cuss the results of using alternative scaling variables. 

A. Econometric Tests and Portfolio Data 

The unconditional model in (4) can be consistently estimated by the 
cross-sectional regression methodology proposed in Fama and MacBeth 
(1973), an approach we use here. In principle, other empirical pro- 
cedures are available for testing the model in (4). We discuss the relative 
merits of alternative methods in Section IV and simply note here that 
the Fama-MacBeth procedure has important advantages for our appli- 
cation, in which we have only a moderate number of quarterly time- 
series observations (fewer than 150 in our data) but in which we require 
a reasonably large number of asset returns to test the model's cross- 
sectional implications.'" 

For summarizing the goodness of fit of each empirical specification, 
we report the average squared pricing errors across all 25 portfolios as 
well as the R2 of the cross-sectional regression showing the fraction of 
the cross-sectional variation in average returns that is explained by each 
model." Although the cross-sectional R2 is not a formal test of model 
specification, it is an informative summary statistic of how well each 
model fits the data, and it neatly illustrates the anomaly emphasized by 
Fama and French (1992) that the classic CAPM explains virtually none 

l b  The data on nonhuman wealth, a, and on subcomponents of the personal consump- 
tion expenditure that we use are available only on a quarterly basis. 
"This goodness of fit measure follows Jagannathan and Wang (1996) and is given by 

[Var, ( 5 )  -Var, (E,)] /Var, (R) ,  where E ,  is the average residual for portfolio i, Var, denotes 
a cross-sectional variance, and variables with bars over them denote time-series averages. 



of the cross-sectional variation in returns on these portfolios. We also 
test whether the coefficients X in (4) are statistically different from zero. 
Following Shanken (1992), we report the standard errors of these co- 
efficients corrected for sampling error that arises because the regressors 
@ are estimated in a first-stage time-series regression for each R,,,,." 
Because Jagannathan and Wang (1998) show that the Fama-MacBeth 
procedure does not necessarily overstate the precision of the standard 
errors if conditional heteroskedasticity is present, we also report the 
conventional t-statistics.lg 

Our data on returns consist of 25 portfolios formed according to the 
same criteria as those used in Fama and French (1992, 1993). These 
data are value-weighted returns for the intersections of five size port- 
folios and five book-to-market equity (BE/ME) portfolios on the New 
York Stock Exchange, the American Stock Exchange, and NASDAQ 
stocks in Compustat. The portfolios are constructed at the end of June, 
and market equity is market capitalization at the end of June. The ratio 
BE/ME is book equity at the last fiscal year end of the prior calendar 
year divided by market equity at the end of December of the prior year. 
This procedure is repeated for every calendar year from July 1963 to 
June 1998. We refer the reader to the Fama-French articles cited above 
for details and data characteristics. We convert the returns to quarterly 
data producing a time series spanning the third quarter of 1963 to the 
third quarter of 1998, that is, 141 observations for each of the 25 
portfolios. 

As advocated by Ferson, Sarkissian, and Simin (2000),we demean the 
scaling variable in all the empirical investigations of this paper. 

IV. Empirical Results 

A. The W M  and the Fama-French Model 

1. Familiar Unconditional Models 

Using returns on the 25 size and book-to-market sorted portfolios de- 
scribed above, we now examine the power of various beta representa- 
tions to explain the cross section of average returns. Table 1 presents 
results of estimating the empirical specification in (4) for the CAPM, 

"The beta coefficients are estimated from a single multiple time-series regression for 
each asset. We use the entire sample to estimate the 6's; a rolling regression approach is 
not appropriate in quarterly data in which fewer than 150 time-series observations are 
available. 

Note that standard errors do not need to be adjusted to account for the use of the 
generated regressor Z@,.This follows from the fact that estimates of the parameters in 
A 

cay, are "superconsistent," converging to the true parameter values at a rate proportional 
to the sample size T rather than proportional to fias in ordinary applications (Stock 
1987). 
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TABLE 1 
FAMA-MACBETHREGRESSIONS USING25 FAMA-FRENCH A,PORTFOLIOS: COEFFICIENT 

ESTIMATESON BETASIN CROSS-SECTIONALREGRESSION 

Factors,, , cay, . Factors,,, 
R2 


Row CONSTANT G, &, Ay SMB HML &, Ay (R2) 

NOTE.-The table presents X esumates from crosssectional Fama-MacBeth regressions using returns of 25 Fama-
French portfolios. E[R,*,I = b[&,l + FA. The ~nd~vidual X, estimates (from the second-pass cross-secuonal regression) 
for the beta of the factor listed In the column heading are reported. In the first stage, the timeseries betas 0 are 
computed in one multiple regression of the portfolio returns on the factors. The term f2- is the return of the value- 
weighted CRSP index, Ay,-, 1s labor income growth, and SMB and HML are the Fama-French mimicking portfolios 
related to slre and book-market equlty ratios. The scaling variable is G.The table reports the Fama-MacBeth cross- 
sectional regression coefficient; in parentheses are two t-statistics for each coefficient estimate. The top statistic uses 
uncorrected Fama-MacBeth standard errors; the bottom statistic uses the Shanken (1992) correction. The term R2 
denotes the unadjusted cross-sectional R2staust~c, and R' adjusts for the degrees of freedom. 

the human capital CAF'M, and the Fama-French three-factor model. The 
table reports the estimated X coefficients, Shanken-corrected and un- 
corrected t-statistics for these coefficients, and R2statistics for the cross- 
sectional regression. Table 2 presents test results for the joint signifi- 
cance of the scaled factors in each model. Section N C  discusses average 
pricing errors for each model. 

To form a basis for comparison, we begin by presenting results from 
a series of familiar unconditional models. Of these, the most familiar 
is the static CAF'M, with the CRSP value-weighted return, Q, used as 
a proxy for the unobservable market return. This model implies a cross- 
sectional specification taking the form 

The results are presented in the first row of table 1. The t-statistic for 
A,, shows that the beta on the value-weighted return is not a statistically 
significant determinant of the cross section of average returns. More- 



TABLE 2 
FAMA-MACBETHREGRESSIONSUSING PORTFOLIOS:25 FAMA-FRENCH TESTSFOR JOINT 

SIGNIFICANCE 

f;+lAND %(. f;+l 
FOR EACH FAC- 

TOR f 

Row ALL Factors,,, cay, . Factors,,, & AY 

1 .798 
.798 

2 ,000 
,022 

3 ,000 
,002 

4 ,000 .963 ,000 
,000 .975 ,016 

5 .OOO ,948 ,000 
,003 ,965 .016 

6 ,000 ,001 ,000 ,008 ,000 
,000 ,092 .021 ,079 ,040 

7 .ooo .001 ,000 .001 .ooo 
,001 .032 ,002 ,012 ,004 

NOTE.-The table presents test results for the joint signlficance of the scaled factors in each model of table 1. Each 
row gives test statistics for the model in the corresponding row of table 1, pvalues are reported from x2 tests of joint 
signlficance for four sets of variables: (i) all the right-handjide betas, (ii) the betas for the fundamend factors, (iii) 
the betas for the scaled factors, and (iv) the beta for each fundamental factorjoint with the beta for that factor scaled. 
The top number is computed using the uncorrected variance-covariance matrix, and the bottom number uses the 
Shanken (1992) correction. The model is estimated using data from 1965:Q3 to 1998:Q3. The coefficient estimates of 
the factors are mult~plied by 100; the estimates of the scaled terms are multiplied by 1,000. 

over, it has the wrong sign according to the CAPM theory. The R2 for 
this regression summarizes this failure: only 1 percent of the cross-
sectional variation in average returns can be explained by the beta for 
the market return. Note that the R2 adjusted for degrees of freedom, 
denoted R2, is negative. These results are now familiar (see Fama and 
French 1992).By contrast, a specification that includes-in addition to 
the value-weighted return beta-the beta for labor income growth ad- 
vocated by Jagannathan and Wang (1996), Ay, performs much better, 
explaining about 58 percent of the cross-sectional variation in returns 
(row 2).'O 

Row 3 of table 1 presents results for the Fama-French three-factor 
model given by 

where the "small minus big" (SMB) and "high minus low" (HML) port-

''Here we use the measure of labor income growth advocated by Jagannathan and 
Wang (1996) : the growth in total personal, per capita income less dividend payments from 
the National Income and Product Accounts published by the Bureau of Economic Analysis. 
In addition, we followed the timing convention ofJagannathan and Wang (1996),in which 
labor income is lagged one month to capture lags in the official reports of aggregate 
income. 
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folios are constructed as in Fama and French (1993)." In sharp contrast 
to the CAPM, this model explains about 80 percent of the cross-sectional 
variation in these returns, and the t-statistic on the HML factor is highly 
statistically significant even after correction for sampling error in the 
0's. These results are consistent with what has been reported in the 
literature using monthly data. With these benchmark results in hand, 
we are now in a position to see how they change when they are modified 
to allow for conditioning information in G1' 

2. Scaled Factor Models 

Row 4 of table 1 shows results for the scaled, conditional CAPM with 
one fundamental factor, A+, = RUw,,+,,and a single scaling variable 
z, = G1'The cross-sectional regression for this scaled model takes the 
form 

The estimated value of A, is not statistically different from zero, implying 
that the time-varying component of the intercept is not an important 
determinant of average returns. Moreover, row 5 of table 1 shows that 
eliminating P,, as an explanatory variable does not have an important 
effect on the marginal predictive power of the remaining betas or on 
the overall fit of the regression. We found this to be generally true in 
a variety of cross-sectional regressions we report in tables 3 and 4 below. 

By contrast, the coefficient on Pmziis strongly significant and is jointly 
significant with the coefficient on P,, (table 2).22 The R2 statistic in row 
4 for the scaled CAPM is considerably higher than for the simple static 
CAPM; it jumps to 31 percent from 1 percent by simply including P,, 
as an additional regressor. 

The scaled CAPM specification including human capital takes the 
form 

The estimation results are presented in table 1, rows 6 and 7 (with and 
without PZi). This model performs much better than the unscaled version 
and explains 75 percent of the cross-sectional variation in average re- 
turns, about as much as the Fama-French three-factor model in row 3. 

The SMB portfolio is the difference between the returns on small and big stock 
portfolios with the same weighted-average book-to-market equity. The HML portfolio is 
the difference between returns on high- and low-BE/ME portfolios with the same weighted- 
average size. Further details on these variables can be found in Fama and French (1993). 

22 These tests are carried out by forming a Wald statistic using either the uncorrected 
or the Shanken-corrected coefficient covariance matrix provided by the Fama-MacBeth 
procedure. Results for both covariance matrices are presented in table 2. 



In particular, the coefficients on the scaled factors, A,, and A,,,, are 
statistically different from zero according to the uncorrected t-statistics. 
The Shanken correction to the t-statistics is large, however, especially 
so for models that include scaled macroeconomic factors rather than 
unscaled returns. The Shanken correction is negligible in the static 
CAPM, where the single factor is L,,as exhibited in row 1 of table 1. 
The Shanken correction is directly related to the magnitude of each X 
coefficient estimate and inversely related to factor variability. Thus, al- 
though the models with macro factors have smaller h estimates than 
models with financial indicators as factors, the estimates of X are not 
proportionally smaller relative to their smaller factor variance. We find 
these differences in the magnitude of the Shanken correction across 
models with and without macro variables to be a feature of all our tests, 
consistent with what has been found in other studies that include mac- 
roeconomic variables as factors (see, e.g., Shanken's [I9921 example 
using macro data and Jagannathan and Wang [1996]). 

Several other features of the cross-sectional results in table 1 bear 
noting. First, in the case of the CAPM (eq. [13]), the average risk price 
for the value-weighted return from the associated conditional linear 
factor model will be a weighted average of X, and A,,, the latter mul- 
tiplied by z, (see eq. [6]). Given these estimates and under the assump 
tion that Var, (R,,,,,) is approximately constant, the average risk price 
for the value-weighted return is found to be positive (recall the discus- 
sion in Sec. IIA). For the scaled human capital CAPM (eq. [14]), this 
same calculation yields a positive average risk price on the human capital 
beta. A problem with this model, however, is that there is a negative 
average risk price on the beta for the value-weighted r e t ~ r n . ' ~  

Second, the estimated value of the average zero-beta rate is large. We 
find this to be a feature of all the scaled models we test. The average 
zero-beta rate should be between the average "riskless" borrowing and 
lending rates, and the estimated value is implausibly high for the average 
investor. Although the (C)CAPM can explain a substantial fraction of 
the cross-sectional variation in these 25 portfolio returns, this result 
suggests that the scaled models do a poorjob of simultaneously pricing 
the hypothetical zero-beta portfolio. This finding is not uncommon in 
studies that use macro variables as factors. For example, the estimated 
values for the zero-beta rate we find here have the same order of mag- 
nitude as that found in Jagannathan and Wang (1996). It is possible 
that the greater sampling error we find in the estimated betas of the 
scaled models with macro factors is contributing to an upward bias in 
the zero-beta estimates of those models relative to the estimates for 

23Jagannathan and Wang (1996) report a similar finding for the signs of the risk prices 
on the market and human capital betas. 
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TABLE 3 

CONSUMPTION
CAPM: FAMA-MACBETH REGRESSIONSUSING 25 FAMA-FRENCH 

PORTFOLIOS 
A. A, COEFFICIENT OF BETASIN CROSS-SECTIONAL REGRESSIONS ESTIMATES 

A 	 A 

Row Constant cayt Act+1 cay, . Act+, R2 ( R ~ )  

1 	 3.24 .22 .16 
(4.93) (1.27) 	 .13 
(4.46) 	 (1.15) 

2 	 4.28 - .I3 .02 .06 .70 
(6.10) (-.43) (33 )  (3.12) .66 
(4.24) (-.30) (.I41 (2.17) 

3 	 4.10 - .02 .07 .69 
(6.82) 	 (-,141 (3.20) .66 
(5.14) 	 ( - . l o )  (2.41) 

B. TESTS FOR JOINT SIGNIFICANCE 
A 

Row 	 A1 Ad+l cay, . Ac,,, Ac,+, and G,. Ac,,, 

1 	 .205 
.249 

2 ,000 ,840 ,002 ,000 
,001 ,888 ,030 ,009 

3 	 ,000 ,893 ,001 ,000 
,001 ,919 ,016 ,001 

NOTE-See note to table 1 Ac denotes consumption growth. 

models with only financial factors. Such arguments for large zero-beta 
estimates have a long tradition in the cross-sectional asset pricing lit- 
erature (e.g., Black et al. 1972; Miller and Scholes 1972). However, if 
the sampling error is not independently and identically distributed and 
if multiple factors are poorly measured, there is little that can be said 
about the direction of bias. Procedures for discriminating the sampling 
error explanation for these large estimates of the zero-beta rate from 
others are not obvious, and its development is left to future research. 

B. The Consumption CAPM 

We now turn to a cross-sectional empirical analysis of the consumption 
CAPM. Table 3 presents, for the CCAPM, the same results presented in 
tables 1 and 2 for the CAPM and human capital CAPM. The scaled 
multifactor consumption CAPM, with z, = qtas the single conditioning 
variable, is a special case of (4) and takes the form 

where Ac denotes the log difference in consumption, as measured in 



Lettau and Ludvigson (2001) .24 Thus the factors in this model are lagged 
h cay, current-period consumption growth, and consumption growth times 
lagged @. For comparison, row 1 of table 3 reports the unconditional 
consumption CAPM estimates (with consumption growth the single fac- 
tor). The unconditional CCAPM performs only slightly better than the 
static CAPM, explaining just 16 percent of the cross-sectional variation 
in average returns on these 25 portfolios. The results of estimating the 
scaled specification are presented in row 2. 

Row 2 shows that the time-varying component of the intercept term 
in (15) is not important: A, is not statistically significantly different from 
zero, and eliminating P,, from the cross-sectional regression does not 
have an important effect on the other regression coefficients or on the 
overall regression fit (the table 1 results for the scaled CAPM models 
are comparable). This is illustrated in row 3, which presents results for 
the case in which PZiis eliminated as a regressor in (15). In the interest 
of parsimony, from here on we focus on specifications in which the time- 
varying component of the constant is omitted (i.e., A, is restricted to be 
zero). None of the results presented in table 1 or table 4 below are 
qualitatively influenced by imposing this re~tr ic t ion.~~ 

Row 2 shows that the estimated values of A,, and A,, are strongly 
jointly significant (panel B). (Because the scaled factor is included to 
allow for the possibility of time variation in the coefficient on that fun- 
damental factor, there is no implication that the betas for the scaled 
and unscaled fundamental factor must be individually significant, only 
that they be jointly significant.) In addition, the coefficient on the scaled 
consumption factor A,, is strongly individually significant (the uncor- 
rected t-statistic for A,, is 3.2; the corrected t-statistic is 2.41). More 
strikingly, the R2statistic indicates that the specification in (15) explains 
70 percent of the cross-sectional variation in average returns on the 25 
Fama-French portfolios. This result stands in sharp contrast to the 1 
percent explained by the static CAPM (row 1, table 1) or the 16 percent 
explained by the unconditional consumption CAPM (row 1, table 3). 

"Breeden et al. (1989) emphasize that measured quarterly consumption may be the 
time average of instantaneous consumption rates during the quarter. They show that one 
can compensate for this bias by multiplying quarterly consumption growth rates by f .  Such 
an adjustment would scale the point estimates of the risk prices we estimate by f but would 
obviously not effect the &statistics, R2statistics, or average pricing errors we report. 

25 By contrast, results are somewhat sensitive to whether% is included in the first-stage 
time-series regression. Note that the parameter b, for a factor jmay be nonzero in a pricing 
kernel with N factors, M,,, = a + Z,N=,b,L,+,, even if its beta is not priced (i.e., A, = 0 in 
the cross-sectional regression). This seems to be the case in our application: including 
the scaling variable Z@ as a factor in the pricing kernel is important even when the beta 
for this factor was not typically priced. Thus we always include the scaling variable as a 
factor in our specification of M,,,. 
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Furthermore, it is quite close to the 80 percent R"roduced from the 
Fama-French three-factor model (row 3, table 

Our finding that the beta for the cross term, z,Ac,+,, is important 
raises the possibility that the data may be well described by the habit 
models discussed above, for which this term is clearly an important part 
of the pricing kernel. Notice also that the improvement in the R2 statistic 
obtained by scaling the unconditional CCAPM is quite dramatic and is 
larger than that derived from scaling the version of the CAPM that 
includes labor income growth. Finally, we note that, even though the 
coefficient A,, in (15) is negative, the implied average risk price for 
corpmption risk in the underlying conditional consumption CAPM, 
E[X,,,], computed as described above, is positive, consistent with the 
theory. 

C. Average Pricing Errors 

Figure 1, discussed in the Introduction, provides a visual impression of 
the relative empirical performance of each model we investigate. In this 
subsection we take a closer look at this figure. For a given empirical 
specification, we plot the fitted expected return for each of the 25 
portfolios against their realized average returns. For reference, the data 
for these plots (the pricing errors for each portfolio in each empirical 
specification) are given in table 4. Each two-digit number in figure 1 
represents one portfolio. The first digit refers to the size quintiles (1 
indicating the smallest firms, 5 the largest), and the second digit refers 
to book-to-market quintiles (1 indicating the portfolio with the lowest 
book-to-market ratio, 5 the highest). Figure 1 a plots fitted returns for 
the static CAPM, figure l b  plots fitted returns for the Fama-French 
model, and figures l c  and Id do so for the unconditional CCAPM and 
the scaled CCAPM, respectively. 

As mentioned, figure l a  shows that the simple, static CAPM explains 
virtually none of the variation in average returns on these portfolios. 
The main source of difficulty is immediately apparent: the mispricing 
of portfolios that have different book-to-market equity ratios for a given 
size value. For example, portfolios 11 (small growth) and 15 (small 
value)-those that are in the smallest size category but in the lowest 

26 It is not surprising that the Fama-French three-factor model explains a slightly larger 
fraction of the variation in average returns on these portfolios. If there is any measurement 
error in a set of theoretically derived aggregate indicators determining the discount factor, 
M, the factor mimicking portfolios for those variables will always price assets better than 
the underlying economic indicators. Mimicking portfolios are typically better measured 
and are often available on a more timely basis than macroeconomic data. On the other 
hand, if the Fama-French factors are not mimicking portfolios for consumption risk but 
are merely ex post mean-variance efficient portfolios, they will again always beat the the- 
oretically derived factors in the sample. 



TABLE 4 
PRICINGERRORS 

HGCAF'M 
Portfolio W M  CAF'M Scaled C W M  CCAF'M Scaled Scaled Fama-French 

A. Individual Portfolios 

SlBl 
SIB2 
SIB3 
SIB4 
SIB5 
S2B1 
S2B2 
S2B3 
S2B4 
S2B5 
S3B1 
S3B2 
S3B3 
S3B4 
S3B5 
S4B1 
S4B2 
S4B3 
S4B4 
S4B5 
S5B1 
S5B2 
S5B3 
S5B4 
S5B5 

B. Pricing Errors of Aggregated Portfolios 

S1 ,872 
S2 ,740 
S3 ,573 
S4 ,601 
S5 ,697 
B 1 .825 
B2 ,541 
B3 .545 
B4 ,599 
B5 ,924 
Average ,705 
x2 63.67* 

N o ~ ~ . - T h i s  tables reports the pricing errors (in percent) from the Fama-MacBeth repessions presented in tables 
1-3. Panel A lists the average errors of each Fama-French portfolio for the model listed in the column heading: HG 
CAPM refers to the human capital CAPM described in the text, S1 refers to the ponfolios with the smallest firms, and 
S5 includes the largest firms. Similarly, B1 includes firms with the lowest book-temarket ratio and B5 the highest. Panel 
A reports pricing errors for the 25 size and book-twmarket sorted portfolios, and panel B computes the square root 
of the average squared pricing errors for aggregated portfolios. The last two rows report the square root of the average 
squared pricing errors across all portfolios and a 2' statistic for a test that the pricing error is zero. The model is 
estimated using data from 1963:Q3 to 1998:Q3. 

* Statistically different from zero at the 5 percent level. 
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and highest book-to-market categories-lie farthest from the 45degree 
line. Similar mispricing occurs for portfolios 21 and 25 (semismall 
growth and semismall value), 31 and 35 (medium-sized growth and 
medium-sized value), and 41 and 45 (semilarge growth and semilarge 
value). For each of these pairs of portfolios, the value portfolio earns 
a higher average return than the growth portfolio, yet the CAPM predicts 
that they should earn roughly the same expected return. Thus the figure 
illustrates a well-known result: it is this "value effect" that destroys the 
static CAPM when confronted with these portfolios. The contrast with 
the Fama-French model in figure 1 b is stark. 

Figure l c  shows that the unscaled consumption CAPM also has dif- 
ficulty explaining the difference in return between high- and low-book- 
to-market portfolios. Again the returns on portfolios 15 and 25 are 
substantially higher than those on portfolios 11 and 21, respectively, yet 
the fitted expected returns for each of these two pairs of portfolios are 
roughly the same. By contrast, the scaled multifactor consumption 
CAPM does a much better job of explaining the value effect (fig. Id): 
the fitted expected returns on value portfolios are high whereas the 
fitted expected returns on growth portfolios are low, consistent with the 
data. 

When the fitted returns from the scaled CCAPM are compared with 
those for the Fama-French model in figure lb, it is evident that the 
scaled consumption CAPM does about as well as the Fama-French model 
in explaining this value effect. Also, the pattern of mispricing in the 
Fama-French model is very similar to that in the scaled CCAPM. For 
example, both models do a much better job of pricing portfolios 11 
and 15, 21 and 25, 31 and 35, and 41 and 45 than the static CAPM. 
Both models have relatively greater difficulty pricing portfolios 11, 51, 
and 15 than they have pricing other portfolios. 

How do the pricing errors vary across more aggregated portfolios? 
Panel B of table 4 reports the square root of the average squared pricing 
errors across 10 aggregated portfolios formed on the basis of the size 
and book-to-market quintiles. It is clear that the pricing errors for the 
scaled consumption CAPM are lower for large-size portfolios and high- 
book-to-market portfolios, and vice versa.27 A similar pattern is displayed 
for the Fama-French model. The last row of table 4 grves the square 
root of the average squared pricing errors across all portfolios. The 
average squared pricing error for the conditional consumption CAPM 
is a little over half as large as that of the simple static CAPM; the average 
squared pricing error for the Fama-French model is about 42 percent 

2 7 T h e ~ eresults are consistent with those of Avramov (1999), who finds that cay has 
important predictive power for returns on large and medium as well as on high-book-to- 
market portfolios in a Bayesian study of return forecasting models. 
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as large as that of the static CAPM. Notice that the average squared 
pricing errors display the same relative pattern across models that the 
R2 statistics do. Thus, if models were ranked by their average pricing 
errors, the same ranking would be obtained using cross-sectional R2 
statistics. 

Just below the average squared pricing errors are the results of an 
asymptoticX2 (Wald) test of the null hypothesis that all the pricing errors 
are jointly zero.28 The table shows that the only models for which the 
null of zero pricing errors may not be rejected are the scaled multifactor 
models; the unscaled models, including the Fama-French model, are all 
statistically rejected according to this test. We are reluctant to place 
emphasis on this result. It is clear that the Fama-French three-factor 
model, the scaled human capital CAPM, and the scaled consumption 
CAPM all have average pricing errors of roughly the same magnitude, 
and the economic size of these errors is not large. The difference in 
statistical significance appears to be attributable to the greater sampling 
error in the estimated betas of the scaled macro factors. Such sampling 
error translates into a larger upward correction to the asymptotic var- 
iancecovariance matrix of the pricing errors. But, more significantly, 
several investigations have found that these tests, which rely on a con- 
sistent estimate of the variance-covariance matrix of pricing errors, have 
poor small-sample properties (e.g., Burnside and Eichenbaum 1996; 
Hansen, Heaton, and Yaron 1996). The small sample size of the Wald 
tests exceeds the asymptotic size, and this is especially true when the 
number of moment restrictions is large relative to the time-series sample 
size as it is in our empirical application. 

D. Intuition 

Why does the scaled CCAPM do so much better than the unscaled 
models at explaining why value stocks earn higher returns than growth 
stocks? This subsection provides some intuition for these findings. Per- 

's The test statistic requires the assumption that the errors in the Fama-MacBeth re- 
gressions are independently and identically distributed over time. It is given by 

where E, is the variance-covariance matrix of the factors, GFMis the estimated vector of 
pricing errors given by the Fama-MacBeth estimates, N is the number of portfolios, and 
Kis the number of factors. The first multiplicative term in parentheses is a correction for 
sampling error in 8 and is due to Shanken (1992). Note that this formula is numerically 
equivalent to the analogous test statistic for ordinary least squares (OLS) estimates from 
cross-sectional regressions, where the OLS standard errors are corrected for cross-sectional 
correlation: 

where E is the N x N covariance matrix of pricing errors from the OLS cross-sectional 
regression (see Cochrane 2001, chap. 12). 
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haps this intuition can be most easily grasped by referring back to equa- 
tion (8). This equation emphasizes that an asset's risk is determined, 
not by a simple correlation of its return with consumption growth, but 
by that correlation conditional on some state variable that reflects time 
variation in risk premia. This time variation in risk premia may be at- 
tributable to time variation in risk aversion (as in models with habit 
persistence, e.g., Campbell and Cochrane [1999]) or time variation in 
risk itself (as in models with time-varying labor earnings or default risk, 
e.g., Constantinides and Duffie [1996] and Chang and Sundaresan 
[1999]). Either way, the concept of risk is very different than in uncon- 
ditional models such as the static CAPM or the unconditional con-
sumption CAPM; it pertains to conditional rather than unconditional 
correlations with consumption growth. 

If this conditionality is important empirically, it should be well cap- 
tured by scaling consumption growth with e,a proxy for the con-
sumption-wealth ratio. Lettau and Ludvigson (2001) find that eis a 
powerful forecaster of excess returns on aggregate stock market indexes; 
therefore, when eis high, risk premia are expected to rise, and when 
A 

cay is low, they are expected to fall. 
Accordingly, the results above suggest that value portfolios are riskier 

than growth stocks not because their returns are more highly uncon- 
ditionally correlated with consumption growth, but because their re-
turns are more highly correlated with consumption growth when risk/ 
risk aversion is high (Z@ is high) than when risk/risk aversion is low 
( e  is low). We explore this possibility in figure 2. Figure 2 plots, for 
pairs of value and growth portfolios in the same size category, the con- 
sumption beta conditional on being in a "bad" state (a period of high 
risk/risk aversion or high Z@) along with the consumption beta con- 
ditional on being in a "good" state (a period of low risk/risk aversion 
or low G).These conditional consumption betas are obtained from 
the following time-series regression, which is implied by our model for 
each portfolio return, R:: 

R:+l = + P i C A ~ f + la + Pi,,A~t+l zf + P:% 

where in our empirical specification, the scaling variable z, = S1'Col-
lecting terms on Act+,, we define a conditional consumption beta for 
the ith portfolio as B: = Pi, + /3i,,z,. This says that the conditional cor- 
relation of each portfolio's return with consumption growth is a function 
of Z@. Figure 2 plots the average conditional consumption beta for 
portfolio i in state s, where s = bad, good, equal to B: = Pi, + @i,,i,, 
where isis the average value of G in state s. For this exercise, a good 
state is defined as a quarter during which G,is at least one standard 
deviation below its mean, and a bad state is a quarter during which 
h cay, is at least one standard deviation above its mean. To avoid clutter, 



good state bad state 

, good state bad state 

FIG.2.--Conditional consumption betas in good and bad states. Each part of the figure 
displarj the average consumption beta in good and bad states, conditional on q-, for 
portfolio i, equal to B, i.PA,+ &,Zn where i, is the average value of Z@in state s, s = 
good or bad. A good state is defined as a quarter in which the scaling variable Z@is one 
standard deviation below its mean value. A bad state is defined as a quarter in which the 
scaling variable Z@is one standard deviation above its mean value. Part a compares B, for 
the small-growth portfolio 11 and the small-value portfolio 15 (portfolios in the smallest 
size category and smallest and largest book-market category, respectively); part b compares 
B, for the semismallgrowth portfolio 21 and the semismall-value portfolio 25 (portfolios 
in the next-to-smallest size category and smallest and largest book-market category, re- 
spectively); part c compares B, for the semilarge-growth portfolio 41 and the semilarge- 
value portfolio 45 (in the next-to-largest size category and smallest and largest book-market 
category, respectively); part d compares B, for the largegrowth portfolio 51 and the large- 
value portfolio 55 (in the largest size category and smallest and largest book-market cat- 
egory, respectively). 
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TABLE 5 

CONDITIONAL CAPM
BETASIN CONSUMPTION 

Portfolio All States Good States Bad States 

SlBl 6.3529 7.3089 5.7052 
SIB2 6.3032 5.8321 6.6223 
SIB3 5.1117 4.4374 5.5686 
SIB4 5.5011 4.4285 6.2277 
SIB5 5.7885 3.4071 7.4018 
S2B1 4.3819 7.6970 2.1361 
S2B2 3.6303 3.6265 3.6329 
S2B3 3.9157 4.1440 3.761 1 
S2B4 3.5227 2.0702 4.5068 
S2B5 4.8271 3.0495 6.0314 
S3B1 2.7042 7.3587 -.4491 
S3B2 2.7613 3.4644 2.2850 
S3B3 2.9171 1.9948 3.5419 
S3B4 2.5753 2.5729 2.5770 
S3B5 3.7081 2.7064 4.3867 
S4B1 1.9670 6.2181 -.9130 
S4B2 2.6187 4.7651 1.1647 
S4B3 1.9439 2.9882 1.2365 
S4B4 2.5048 2.3777 2.5908 
S4B5 3.7845 3.0944 4.2520 
S5B1 1.6045 6.0536 -1.4096 
S5B2 1.1598 2.0407 .5629 
S5B3 2.3243 4.0597 1.1487 
S5B4 1.2386 3.4376 -.2511 
S5B5 3.0729 3.3378 2.8935 

SOTE.-The table reports h e  average consumpuon betas in good and bad states, conditional on z,., for portfolio 1, 

equal to B: = Pi,+ &>,, where i,a the average value of G in state s, s = good or bad. A good state is defined as a 
quarter in which the scaling variable G is one standard deviation below its mean value. A bad state is defined as a 
quarter in which the scaling variable ;;;iis one standard deviation above its mean value. 

figure 2 plots only those conditional betas for the portfolios that are 
most mispriced by the static CAPM. The estimated conditional betas for 
the full set of 25 portfolios are given in table 5. 

If time variation in risk premia is important for explaining why value 
portfolios are risky, those portfolios should have higher consumption 
betas in bad times (when G,is high) than in good times (when G,is 
low). In addition, if value portfolios are riskier than growth portfolios, 
they should have higher consumption betas in bad times than growth 
stocks. Figures 2a-2c show that this is precisely what is found. Value 
portfolios (defined to be a portfolio that is in the highest book-market 
category for a given size category) have higher consumption betas in 
bad states than the growth portfolios in the same size category (a growth 
portfolio is defined as one in the lowest book-market category for a 
given size category). Thus BE,  > B,!,:,, BE, > B;',,, and B;:, > B:',,. By 
contrast, growth portfolios have higher consumption betas in good states 
than value portfolios, that is, B&, < B,':,,, Biio, < B&,, and Bi;,,, < 
B,:,,. Furthermore, value portfolios are more highly correlated with 



15 

consumption in bad times than they are in good times, that is, BE, > 
B,,,,, BE, > B,$,, and B::, >B;:,,; the opposite is true for growth port- 
folios, that is, B;:, < B&,, BE:, < B::,,, and B:',, < B;BOd. The semilarge 
growth portfolio 41 even provides a bit of consumption insurance, yield- 
ing a slight negative covariance with consumption growth in bad states. 
Thus value stocks are more highly correlated with consumption growth 
during times in which the representative investor least wants them to 
be, thereby making them riskier than growth stocks. Unconditional 
CCAPM models fail to capture the state dependency displayed by the 
criss-cross pattern of consumption betas in figure 2 because they assume 
that each asset's covariance with consumption growth is constant. This 
explains why the conditional consumption CAPM does a much better 
job than unconditional models of pricing these portfolios, correctly 
predicting that portfolios 15, 25, and 45 have higher average returns 
than portfolios 11, 21, and 41, respectively. The static CAPM and un- 
conditional consumption CAPM miss this conditionality in the corre- 
lation of returns with consumption growth and, as a consequence, tend 
to price these portfolios poorly. 

Figure 2d illustrates this intuition from a slightly different perspective. 
An inspection of figures l a  and l c  shows that the large-value portfolio 
55-unlike the other portfolios plotted in figures 2a-2c-is almost per- 
fectly priced by both the static CAPM and the unconditional consump- 
tion CAPM. The reason for this is that the consumption beta for port- 
folio 55 is about the same in good states as it is in the bad states 
(B:;, = BE,). Because this portfolio's correlation with consumption 
growth just happens to be independent of Gt,the static CAPM and 
unconditional consumption CAPM price its average return well. 

Table 5 shows that the general pattern displayed in figure 2-namely, 
that value stocks are more highly correlated with consumption growth 
in bad times than they are in good times and that value stocks are more 
highly correlated with consumption growth in bad times than growth 
stocks-holds for all five pairs of value-growth portfolios in a given size 
category. 

Another way to provide intuition for our findings is to follow the 
novel approach taken in Lakonishok, Shleifer, and Vishny (1994). They 
reason that value stocks would be fundamentally riskier than growth 
stocks if (i) the former underperforms the latter in some states of the 
world and (ii) these times of underperformance are, on average, bad 
states rather than good states. Figure 3 shows the quarterly excess return 
on a value over a growth stock in the same size category. The excess 
returns displayed pertain to four pairs of portfolios that are very poorly 
priced by the static CAPM but are well priced by the Fama-French model 
and scaled CCAPM. These are the excess returns on portfolio 15 over 
11, 25 over 21, 35 over 31, and 45 over 41. 
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FIG. 3.-Value minus growth returns. This figure shows the quarterly excess return on 
a value over a growth stock in the same size category: The excess returns displayed are 
for portfolio 15 over 11 in part a, 25 over 21 in part b, 35 over 31 in part c, and 45 over 
41 in part d. 
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The four parts of figure 3 show that there are many quarters during 
which the value portfolio underperformed the growth portfolio in the 
same size category. In fact, underperformance in these four parts occurs 
between 35 and 50 percent of the time. Thus condition i is satisfied in 
our data. A simple calculation shows that, for each of these excess re- 
turns, periods of underperformance were quarters in which @was, on 
average, above its mean (i.e., risk premia were above average), whereas 
quarters of overperformance were times in which was, on average, 
below its mean (i.e., risk premia were below average). Thus periods of 
underperformance tend to coincide with bad states, and condition ii is 
satisfied. 

Although these conclusions are quite different from those reached 
by Lakonishok et al., there are several ways in which our analyses differ. 
Our definition of value and growth portfolios, the horizon over which 
we measure excess returns, and the variable we use to determine good 
and bad states all differ from those of Lakonishok et al. but are the 
appropriate choices for our empirical application. On the other hand, 
our results are not that surprising given the finding in Lakonishok et 
al. that the buy-and-hold horizon matters. The shortest horizon consid- 
ered by Lakonishok et al. is one year, and as they consider longer ho- 
rizons they find that value stocks more consistently outperform their 
definition of growth stocks. We find that value stocks underperform 
growth stocks frequently at quarterly buy-and-hold horizons, suggesting 
that important movements in conditional moments occur at horizons 
of less than one year. 

E. Including Characteristics 

This subsection investigates whether there are any residual effects of 
firm characteristics in the scaled (C)CAPM models investigated above. 
We do this because several authors have argued that such a procedure 
provides a test of model misspecifi~ation.~~ This examination is done by 
alternately including portfolio size-the time-series average of the log 
of market equity for each portfolio-and the portfolio book-market 
equity ratio as additional explanatory variables in the cross-sectional 
regressions. A large t-value on the characteristic term suggests that the 
model may be misspecified. These results are presented in table 6. 

Kan and Zhang (1999) argue that "useless" factors can appear statistically important 
in the Fama-MacBeth methodology when the model being tested is misspecified. However, 
Berk (1995) and Jagannathan and Wang (1998) show that this misspecification can be 
tested for by including firm-specific characteristics as additional explanatory variables in 
cross-sectional asset pricing tests. Jagannathan and Wang (1998, theorem 6 )  prove that a 
useless factor cannot drive out a firm characteristic in the cross-sectional (second-pass) 
regression. 



TABLE 6 
FAMA-MACBETH INCLUDING CHARACTERISTICSREGRESSIONS 

A. A, ESTIMATES REGRESSIONS SIZEON BETASIN CROSS-SECTIONAL INCLUDING 

A

Factors,,, cay, . Factors,,, 
R2 

Row CONSTANT %, Ay AC R,, A AC SIZE (R2) 
1 14.18 -3.60 -.57 .70 

(4.77) (-2.78) (-3.46) .67 
(4.35) (-2.54) (-3.15) 

2 13.10 -3.05 .82 -.49 .75 
(4.71) (-2.49) (3.14) (-3.24) .73 
(3.79) (-2.01) (2.52) (-2.61) 

3 12.03 -3.00 .51 -.41 .74 
(4.56) (-2.52) (2.00) (-2.81) .70 
(3.73) (-2.06) (1.63) (-2.30) 

4 10.33 -2.68 .33 .59 -.02 -.33 .80 
(3.78) (-2.33) (1.36) (2.63) (-.59) (-1.93) .76 
(2.97) ( - 1.84) (1.07) (2.07) (-.46) (-1.52) 

5 5.59 .04 -.I8 .22 
(2.04) (.35) (-1.11) .15 
(2.03) (.35) (-1.10) 

6 6.09 -.I6 .08 - .I5 .72 
(2.21) (-1.45) (3.23) (-.87) .68 
(1.66) ( - 1.09) (2.42) ( - .65) 

B. A, ESTIMATES REGRESSIONS BOOK-MARKETON BETASIN CROSS-SECTIONAL INCLUDING 
RATIO 

BOOK-Factors,,, cay, .Factors,,, 
MARKET R2 

Row CONSTANT R ,  Ay AC R,,, Ay AC RATIO (R2) 

NOTE.-See notes to tables 1-3. This table presents estimates of cross-sectional Fama-MacBeth regressions using the 
returns on 25 Fama-French portfolios. 

E [ R , + , l  = EL%,] + B'h + dB., 

where 8,denotes a characteristic variable: B>is either the log of the portfolio size (size in panel A) or the log of the 
portfolio book-to-market ratio (in panel B). 



The results in row 1 are comparable with what has been reported 
elsewhere for the static CAPM: the coefficient on size is strongly sig- 
nificant, and the R2 statistic jumps from 1 to 70 percent when it is 
included as an explanatory variable. Also, the risk price for the value- 
weighted return is now negative and statistically significant. Once labor 
income growth is included in the scaled CAPM (row 4), these size effects 
are attenuated but not entirely eliminated; the coefficient on size is not 
statistically different from zero according to the corrected t-statistic but 
remains statistically significant according to the uncorrected t-statistic. 
By contrast, size is not a significant determinant of the cross section of 
average returns in either the unconditional consumption CAPM or the 
scaled consumption CAPM; the coefficient on this variable is not sta- 
tistically significant, and the overall fit of the regression is roughly the 
same regardless of whether size is included in the regression. 

Panel B of table 6 shows that the book-market ratio is also highly 
significant when included in both the unscaled and scaled versions of 
the CAPM, and the R2 statistic increases by more than 80 percent once 
the book-market ratio is included in the static CAPM model. Even the 
human capital CAPM has difficulty eliminating residual book-to-market 
effects regardless of whether this model is scaled (rows 3 and 4). A 
similar result holds for the unscaled consumption CAPM. 

Only the scaled consumption CAPM specification is able to eliminate 
residual book-to-market effects. For this model, the coefficient on the 
included variable book-market ratio is not statistically different from 
zero at conventional levels when either the uncorrected or Shanken- 
corrected standard errors are used. The conditional CCAPM is the only 
CAPM model that passes this test. In addition, a comparison with the 
results in table 3 shows that there is no substantial increase in adjusted 
R v r o m  including the portfolio book-market ratio in the scaled con- 
sumption CAPM specifications. Thus the results presented in this sub- 
section provide no evidence that misspecification bias due to the inclu- 
sion of useless factors is driving the earlier findings for the scaled 
consumption CAPM. 

In summary, the scaled consumption CAPM performs better in ex- 
plaining the cross section of returns than the other scaled models along 
at least two dimensions. First, in contrast to the scaled human capital 
CAPM, the average risk price for the consumption beta has the correct 
sign. Second, in contrast to all the other scaled models, portfolio char- 
acteristics do not show up as significant explanatory variables once the 
scaled factors are included. For these reasons, the scaled CCAPM is our 
preferred specification. 
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E: Alternative Scaling Variables 

So far we have considered scaled multifactor models using G as a 
conditioning variable. We argued above that= is an excellent candidate 
for a scaling variable and may have important advantages over other 
popular conditioning variables because both theory and empirical evi- 
dence suggest that it summarizes investor expectations about future 
returns on the entire market portfolio rather than merely some com- 
ponent of the market portfolio return. Still, we also compared the results 
presented in this paper with those using the same empirical technique 
and alternative scaling variables, such as the log dividend-price ratio, 
the spread between yields on a BAA-rated bond and a AAA-rated bond 
(Jagannathan and Wang 1996), and a term spread. These results are 
available on request. With few exceptions, these results show that a 
conditional CCAPM, using G as conditioning information, does a sig- 
nificantly better job of explaining the cross section of average returns 
than conditional scaled models in which these alternative indicators are 
used as instruments. 

G. Scaled Returns 

Our chief concern in this paper is not to test the scaled versions of the 
(C)CAPM on every set of portfolios available, but rather to explain the 
cross section of returns on those 25 portfolios that have so bedeviled 
the CAPM and so lauded the Fama-French three-factor model. Never- 
theless, in this subsection, we briefly discuss estimation results using 
scakd returns, which is analogous to Hansen and Singleton's use of con- 
ditioning variables in generalized method of moments estimation. As 
Cochrane (1996) emphasizes, scaled returns are intuitively appealing 
because they may be interpreted as "managed" returns, whereby a man- 
ager invests more or less in the unscaled portfolios according to the 
signal provided by the scaling variable, in our case the lagged value of 

30cay. 
We perform two additional Fama-MacBeth regressions including 

scaled portfolio returns. First, we add two returns, the market return, 
k,,, to the set of 25 size and and the scaled market return, R,,,=,-,, 
book-to-market returns to obtain a new cross section of 27 portfolio 
returns. Second, we multiply each of the 25 returns by Gt-,and add 
these to the original 25 returns, for a total of 50 returns. The results of 

Cochrane (1996) also emphasizes that it is important to scale the scaling variable so 
that the moments of the scaled returns are roughly comparable to those of the unscaled 
returns. Otherwise, scaled returns can have unrealistic units. Thus we follow Cochrane 
and use 1 + [%,+,/o(Z@)] to scale returns, where a(@) is the standard deviation of 
A cay. Recall that Z@-, is demeaned, so this just multiplies each return by the standardized 
value of Gt-,while preserving the scale of the return. 



TABLE 7 
SCALEDRETURNS 

Joint Significance f? Pricing Error 
Portfolios (1) (2) (3) (4) 

A. CCAPM 

25 Fama-French, market return, and 
scaled market return .81 .06 .05 .77 

25 Fama-French and scaled 25 Fama-
French .ll .14 .12 1.57 

B. Scaled CCAPM 

25 Fama-French, market return, and 
scaled market return .OO .71 .68 .41 

25 Fama-French and scaled 25 Fama-
French .OO .71 .69 .91 

C. Fama-French 

25 Fama-French, market return, and 
scaled market return .OO .58 .53 .50 

25 Fama-French and scaled 25 Fama-
French .01 .46 .43 1.24 

N o ~ ~ . - s e ethe notes to tables 1-3. This table presents results of Fama-MacBeth regressions using scaled portfolio 
returns in addiuon to the 25 Fama-French portfolios. Results reported in the top row of each panel are for remessions 
in which the market return and the scaled market return are added to the origin& 25 portfolio~eturns. ~esults;e~orted 
in the bottom row of each panel are for repressions in which the scaled returns of all 25 Fama-French wrtfolios are 
added to the original 25 portfolio returns. h e  scaled portfolio returns are computed as (1+ [~,/o(Z$,)]l&,+,.Col. 
1 reports the joint significance of all factors, col. 2 reports the unadjusted ff statistic for the cross-sectional regression, 
col. 3 reports the ff statistic adjusted for degrees of freedom, and col. 4 reports the square root of the average squared 
pricing error across all portfolios. 

the Fama-MacBeth cross-sectional tests for these two sets of portfolios 
are presented in table 7. The table reports, for the unscaled CCAPM, 
the scaled CCAPM, and the Fama-French three-factor model, the ad- 
justed and unadjusted R2statistics for the cross-sectional regression and 
the square root of the average squared pricing errors. To avoid clutter, 
this table reports only the pvalues forjoint significance of all the factors 
in each model rather than t-statistics for each individual factor. 

Table 7 shows that the unscaled CCAPM does a poorjob of explaining 
both sets of portfolios, which include scaled returns. For the set of 27 
portfolios, the adjusted R2statistic is only 5 percent; for the set of 50 
portfolios, it is only 12 percent. By contrast, the scaled CCAPM generates 
an adjusted R2statistic for these portfolios of 68 and 69 percent, re- 
spectively, and average pricing errors that are much smaller than those 
for the unscaled CAPM. Indeed, they are about half as large when the 
set of 27 returns is used and about 60 percent as large when the set of 
50 returns is used. Interestingly, the scaled CCAPM also does better than 
the Fama-French model in capturing the cross section of returns on 
these two sets of portfolios, which include scaled returns. The Fama- 
French model explains about 53 percent of the cross-sectional variation 
in the 27 returns, compared to 68 percent for the scaled CCAPM, and 
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the square root of the average squared pricing errors for the Fama- 
French model is about 20 percent larger than that of the scaled CCAPM. 
The Fama-French model explains about 43 percent of the cross-sectional 
variation on the 50 portfolio returns, compared to 69 percent for the 
scaled CCAPM, and the square root of the average squared pricing errors 
for the Fama-French model is almost 40 percent larger than that of the 
scaled CCAPM. 

These results imply that the Fama-French model has greater difficulty 
pricing the scaled portfolio returns than the scaled CCAPM model has. 
Note that the cross-sectional results using scaled returns can differ from 
those using the unscaled results only if the scaling variable has some 
time-series forecasting power for the returns being scaled (i.e., if the 
covariance between z t+ , and &,,is nonzero). We find that ei-,(unlike 
other popular forecasting variables, e.g., the dividend yield) does in fact 
have forecasting power for these returns, with R' statistics from quarterly 
forecasting regressions ranging from 9 to 16 percent for the 25 
portfolios. 

V. Alternative Estimation Methodologies 

In this paper, we use the Fama-MacBeth procedure for testing the cross- 
sectional explanatory power of each model. As Cochrane (2001) notes, 
the Fama-MacBeth methodology is practically the same as first-stage 
generalized method of moments (GMM), where the identity weighting 
matrix is used. Other methodologies exist, including some form of sec- 
ond-stage GMM (where an estimated weighting matrix is used)." This 
type of second-stage GMM, using the second-moment matrix for returns 
as a weighting matrix, has been advocated by Roll and Ross (1994) and 
Kandel and Stambaugh (1995) as a way of checking whether cross-
sectional asset pricing tests are sensitive to the particular set of portfolios 
on which the tests were carried out. For the application pursued in this 
paper, however, we argue that the Fama-MacBeth methodology-or first-
stage GMM-is more appropriate than second-stage GMM, where an 
estimated weighting matrix is employed. We make this argument for 
two reasons. 

First, second-stage GMM estimation is unsuitable in studies that have 
a small time-series sample relative to the cross-sectional sample size 
(Ferson and Foerster 1994; Altonji and Segal 1996; Christian0 and Den 
Haan 1996; Hansen et al. 1996; Ahn and Gadarowski 1999). Our quar- 
terly data yield far fewer time-series observations than in many previous 

'' We use the term "second-stage" loosely here to refer to any GMM estimation in which 
the matrix used to weight the criterion function is estimated, even if the GMM procedure 
can be done in one "stage." 



empirical applications for which monthly data were available. Both the 
optimal GMM weighting matrix of Hansen (1982) and the second- 
moment matrix of returns (Hansen and Jagannathan 1997) are likely 
to be poorly estimated in samples of the size encountered here. Indeed, 
for this reason, it is often argued that first-stage GMhl should serve as 
a robustness check on the results of any second-stage GMM e~timation.~' 
If the two sets of results differ greatly, the studies cited above suggest 
that the source of discrepancy may lie with the poor finite sample es- 
timate of the weighting matrix used in second-stage GMM. 

To illustrate the potential for this problem in our application, we 
performed GMM estimation of our empirical specification for M,,, on 
the full set of 25 portfolios using the second-moment matrix of returns 
to weight the criterion function and computed the Hansen and Jagan- 
nathan (1997) distance measure along with its associated pvalue as in 
Jagannathan and Wang (1996) ." Given the small-sample problems with 
GMM, it is not surprising that this estimation produces a large Hansen- 
Jagannathan distance that is statistically different from zero for all the 
models we considered (including the Fama-French model). These sta- 
tistical criteria apparently have little power to discriminate among the 
asset pricing models we explore, suggesting that the Fama-French model 
does about the same as the unconditional CCAPM, which does about 
the same as the scaled (C)CAPM models in explaining the cross section 
of average returns on these portfolios. Hodrick and Zhang (2000) report 
similar findings using quarterly data of roughly the same sample used 
here. To check whether these findings are likely to be a mere artifact 
of our small time-series sample (which contains 146 quarterly obser- 
vations) given the relatively large cross section of 25 portfolios, we per- 
form three applications of GMM estimation that, according to the re- 
search cited above, should be more robust to small-sample biases. 

First, as recommended by Altonji and Segal (1996), we undertake 
GMM estimation on the full set of 25 Fama-French portfolios, but instead 
of using the second-moment matrix of returns to weight the criterion 
function, we use the identity matrix. It should not be surprising that 
these results lead to the same conclusions as the Fama-MacBeth pro- 

32 Altonji and Segal (1996) show that first-stage GMM estimates using the identity matrix 
are far more robust to small-sample problems than GMM estimates in which the criterion 
function has been weighted with an estimated matrix. Cochrane (2001) recommends using 
the identity matrix as a robustness check in any estimation in which the cross-sectional 
dimension of the sample is less than one-tenth of the time-series dimension. 
"See Hansen and Jagannathan (1997) and Jagannathan and Wang (1996) for a detailed 

explanation of the Hansenjagannathan distance. It gives the squared distance from the 
candidate stochastic discount factor of a given asset pricing model to the set of all the 
discount factors that price the N assets correctly. Alternatively, the Hansenjagannathan 
distance is the pricing error for the portfolio that is most mispriced by the model. In 
principle, if the model is correct, the Hansenjagannathan distance should be statistically 
indistinguishable from zero. 
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cedure, since, as mentioned, the two approaches are essentially the 
same. By explicitly running first-stage GMM, however, we may readily 
compute an alternative statistical measure of model performance, 
namely the square root of the minimized GMM objective function, a 
statistic we denote Dist. Following Jagannathan and Wang (1996)-who 
show how one can test whether Dist is statistically different from zero 
for any GMM estimation using an arbitrary weighting matrix-we test 
whether this distance measure is statistically different from zero. This 
provides a formal test of each asset pricing model. 

Second, an alternative way to reduce small-sample bias is to cut back 
on the number of cross-sectional observations by performing second- 
stage GMM estimation on a smaller set of portfolios. We do so for a 
subset of 10 of the original 25 Fama-French portfolios and for a set of 
six size and book-market sorted portfolios provided by Fama and French. 
For both of these second-stage estimations, we use the second-moment 
matrix of returns as a weighting matrix. These last two GMM estimations 
minimize an objective function that is insensitive to the initial choice 
of portfolios (so it addresses the criticisms raised in Roll and Ross [I9941 
and Kandel and Stambaugh [1995]) but at the same time reduce the 
number of cross-sectional observations (thereby mitigating the small- 
sample biases). 

The results are presented in table 8, and the methodology is discussed 
in more detail in Appendix B. For each of these three alternative GMM 
applications (one using the full set of 25 portfolios and the identity 
weighting matrix and two using a reduced number of portfolios and 
the second-moment weighting matrix), the scaled consumption CAPM, 
with cay used as a scaling variable, posts a significant improvement over 
its unscaled CCAPM counterpart. For all three of these estimations, the 
statistic Dist is between 47 and 63 percent smaller for the scaled CCAPM 
than it is for the unscaled CCAPM and close in magnitude to the Dist 
measure for the Fama-French three-factor model. Moreover, we cannot 
reject the hypothesis that Dist = 0 for the scaled CCAPM, whereas the 
opposite is true for the unscaled CCAPM. These results contrast sharply 
with those when the full set of 25 portfolios are used, and they reject 
the conclusion drawn in Hodrick and Zhang (2000) that scaling does 
little to enhance the performance of the CCAPM when these types of 
tests are performed. When we take steps to reduce the potential impact 
of small-sample biases, scaling with i@improves model performance by 
both an economically and statistically significant amount. These findings 
underscore the danger of running empirical horse races among asset 
pricing models by performing GMM estimation in small samples in 
which the weighting matrix is estimated. 

Table 8 also shows that we can reject the Fama-French three-factor 
model (Dist is statistically different from zero), even though its pricing 
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TABLE 8 

GMM ESTIMATES 


CCAPM SCALEDCCAPM FAMA-FRENCH 

PORTFOLIOS Joint 	 JointAND Joint 
WEIGHTING Significance Dist Significance Dist Significance Dist 
MATRICES (1) (2) (3) (4) (5) (6) 

25: 
Hansen-Jagannathan .47 65.44 .01 62.75 .OO 59.33 

matrix (.OW (.OW (.OW 
Identity matrix 	 .27 3.14 .OO 1.86 .OO 1.54 

(.01) (.I41 (.OO) 
10: 

Hansen-Jagannathan .54 47.92 .OO 38.46 .OO 40.60 
matrix (.OO) (.24) (.OO) 

Identity matrix 	 ,313 2.00 .OO 1.26 .OO 1.12 
(.01) (.20) (.OO) 

6: 
Hansen-Jagannathan .23 38.07 .OO 26.03 .OO 28.99 

matrix (.01) (.14) (.01) 
Identity matrix .25 1.21 .OO .57 .OO .57 

(.09) ( . lo)  (.01) 
NOTE.-See the notes for tables 1-3. This table presents GMM estimates of models of the form 

1 = E,[M,+,(l+ R,+,)I,M,,, = bv,,,. 

The consumption CAPM uses only consumption growth Ac as factor, and the scaled CCAPM uses as a scaling 
variable for Ar. The three-factor Fama-French model includes the value-weighted CRSP index (&) and the Fama- 
French facton SMB and HML. The model is estimated using three sets of portfolios: the original 25 Fama-French 
portfolios, a subset of 10 portfolios (SlBl ,  SlB5, S2B1, SlB5, S3B1, S3B5, S4B1, S4B5, S5B1, and S5B5), and the six 
portfolios underlvina SMB and HML. Two different weiahtina mauices are used: the second-moment matrix of returns ' "  	 " 

(Hansen and Jagannathan 1991) and the identity matrix. Cols. 1,3,and 5 report pvalues of a test ofjoint significance 
of the estimated oarameters in b. Dist denotes the sauare root of the minimized CMM obiective function (multiolied , . 
by 100). pvalues of a test that Dist is equal to zero are reported in parentheses (computed according to Jagannathan 
and Wang [1996]). The model is estimated using data from 1963:Q3 to 1998:Q3. 

errors are roughly the same as those of scaled CCAPM. Like the Wald 
test results discussed above, these findings point to a potential problem 
with using purely statistical criteria to judge model performance, par- 
ticularly in small samples in which second moments are likely to be 
poorly e~t i rnated.~~ 

Finally, there is a more fundamental reason we favor the Fama- 

34 Other researchers have recommended the use of generalized least squares (GLS) on 
the grounds that asset returns may display conditional heteroskedasticity. When conditional 
heteroskedasticity is present, the GLS approach should improve efficiency. However, the 
problems with GLS estimation are similar to those with second-stage GMM estimation. 
First, in small samples, the GLS transformation can place too much weight on what appear 
to be nearly riskless portfolios so measured as a result of luck in a short sample. Second, 
as in any application of GLS, the improvement in efficiency depends on knowing the true 
covariance matrix of returns. Since this knowledge is rare, GLS is often less robust than 
the Fama-MacBeth procedure based on OLS. Third, conditional heteroskedasticity in 
quarterly data is less evident than in the monthly data commonly used, so the improvement 
in efficiency from GLS is likely to be marginal. Even so, we may obtain parameter estimates 
without making the assumption that the errors are conditional homoskedastic by using 
first-stage GMM to estimate b and then using (5) to back out the X. Appendix B dem- 
onstrates that doing so gives values for X that are almost identical to those using the Fama- 
MacBeth methodology. 
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MacBeth approach over second-stage GMM of any kind. The original 
Fama-French portfolios, sorted according to size and book-to-market 
equity ratios, were chosen carefully to represent economically interest- 
ing characteristics. When an estimated weighting matrix is used, test 
portfolios become linear combinations of the orignal portfolios, which 
can be difficult to interpret economically and can even imply implau- 
sible long and short positions in the original assets. The size and value 
puzzles documented by Fama and French (1992, 1993) originate in 
reference to the original 25 portfolios, not to some reweighted portfolio 
of these portfolios." Thus, if one wants to address the question of 
whether a set of macroeconomic factors can explain the value premium 
documented by Fama and French (1992), it is necessary to focus asset 
pricing tests on the original size and book-market sorted portfolios. Use 
of the second-moment weighting matrix undoes this specification of 
carefully constructed portfolios based on economically interesting 
characteristics. 

VI. Conclusion 

Empirical asset pricing has presented an abundance of formidable chal- 
lenges for both the CAPM and the consumption CAPM in recent years. 
One of the most compelling of these challenges is presented in two 
papers by Fama and French (1992, 1993), who show that a broad stock 
market beta cannot explain the difference in return between portfolios 
with high and low book-to-market equity ratios. Consumption-based as-
set pricing models fare little better in this regard. 

The failures of the CAPM and the consumption CAPM documented 
over the last 15 years have prompted researchers to seek alternative 
empirical models for explaining the pattern of returns on portfolios 
formed according to size and book-to-market equity ratios. Fama and 
French (1993) demonstrate that a three-factor model consisting of a 
broad stock market beta and betas on two mimicking portfolios related 
to size and book-to-market equity ratios can capture strong common 
variation in returns. Yet these results have been a source of controversy 
as some researchers question whether the mimicking portfolios truly 
capture nondiversifiable, and therefore macroeconomic, risk. Since 
models that specify actual macroeconomic variables as risk factors have, 
as yet, failed to explain a significant fraction of the variation in these 
returns, this contention persists. 

We argue that the results presented in this paper go a long way toward 

'j 
 This is evidenced by the finding that the Fama-French three-factor modeldes igned 
to fit the empirical evidence on the orignal po r t fo l iodoes  poorly in GMM tests in which 
the second-moment matrix of returns is used to weight the criterion function. 



resolving this controversy. We employ an empirical test of the (C)CAPM 
in which the discount factor is approximated as a linear function of the 
model's fundamental factors. Instead of assuming that the parameters 
of this function are fixed over time, as in many previous studies, we 
model the parameters as time-varying by scaling them with a proxy for 
the log consumption-wealth ratio. In contrast to the simple static CAPM 
or unconditional consumption CAPM, we find that these scaled mul- 
tifactor versions of the CCAPM can explain a substantial fraction of the 
cross-sectional variation in average returns on stock portfolios sorted 
according to size and book-to-market equity ratios. These results seem 
to be especially supportive of a habit formation version of the con- 
sumption CAPM, where the multiplicative, or scaled, consumption fac- 
tor is important. This scaled consumption CAPM does a good job of 
explaining the celebrated value premium: portfolios with high book-to- 
market equity ratios also have returns that are more highly correlated 
with the scaled consumption factors we consider, and vice versa. Fur- 
thermore, the scaled consumption model eliminates residual size and 
book-to-market effects that remain in the CAPM. Taken together, these 
findings lend support to the view that the value premium is at least 
partially attributable to the greater nondiversifiable risk of high-book- 
to-market portfolios, and not simply to elements bearing no relation to 
risk, such as firm characteristics or sample selection biases. 

Our results also help shed light on why the Fama-French three-factor 
model performs so well relative to the unscaled size: the data suggest 
that the Fama-French factors are mimicking portfolios for risk factors 
associated with time variation in risk premia. Once the (C)CAPM is 
modified to account for such time variation, it performs about as well 
as the Fama-French model in explaining the cross-sectional variation in 
average returns. Of course, as with any model, the one investigated here 
is only an approximation of reality, and it is clear that some features of 
these data remain unexplained even after one accounts for these con- 
sumption covariances. The success of the (C)CAPM model tested here 
rests with its relative accuracy rather than with its ability to furnish a 
flawless description of reality. 

A key component of this success is our choice of conditioning infor- 
mation. We argue here that the difference between log consumption 
and a weighted average of log asset wealth and log labor income is likely 
to provide a superior summary measure of conditional expectations. 
We find that, consistent with this proposition, the scaled consumption 
CAPM, using as an instrument, typically performs far better than it 
does using other possible instruments, such as the dividend-price ratio, 
the default spread, or the term spread. 

The conditional linear factor models we explore here are quite dif- 
ferent from unconditional models. If conditional expected returns to 
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the market portfolio are time-varying, the investor's discount factor will 
not merely depend unconditionally on consumption growth or the mar- 
ket return, but instead will be a function of these factors conditional 
on information about future returns. Assets are riskier if their returns 
are more highly conditionally correlated with factors, rather than un-
conditionally correlated as in classic versions of the (C)CAPM. The 
approach taken here, of scaling factors with information available in 
the current period, leads to a multifactor, unconditional model in place 
of a single-factor, conditional model. This approach therefore provides 
a justification for requiring more than one factor to explain the behavior 
of expected returns, even if one believes that the true model is, for 
example, a consumption-based intertemporal asset pricing model with 
a single fundamental factor. By deriving this multifactor structure from 
an equilibrium framework, we can mitigate a common criticism of mul- 
tifactor models, namely, that multiple factors are chosen without regard 
to economic theory.36 The empirical results we obtain from doing so 
suggest that a multifactor version of the consumption CAPM can explain 
a large portion of the cross section of expected stock returns. 

Appendix A 

Derivation of the Approximate Log Consumption-Wealth Ratio 

The approximation of the log consumption-aggregate wealth ratio presented 
here was first derived in Campbell and Mankiw (1989). They show that the 
investor's intertemporal budget constraint, w+,= (1 + R,,,+,)(l4- C,), may be 
expressed as 

where w+,is aggregate (human plus nonhuman) wealth in period t + 1; p,, is 
the steady-state ratio of invested to total wealth, (W- C) /W;  and k is a lineari- 
zation constant that plays no role in our analysis. Solving this difference equation 
forward and imposing that lim,,,p;,(c,+, - w,,,) = 0,we may write the log con- 
sumption-wealth ratio as 

Taking expectations of (A2) produces (9) 

36 For example, these criticisms can be found in Lo and MacKinlay (1990), Breen and 
Korajczyk (1993), and Kothari, Shanken, and Sloan (1995). 
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Appendix B 

GMM Estimation 

This Appendix presents results from generalized method of moments (GMM) 
estimates of models taking the form 

We use two prespecified weighting matrices, the Hansen-Jagannathan, second- 
moment weighting matrix and the identity matrix. To assess whether the GMM 
results may be influenced by small-sample problems, three alternative GMM 
estimations are performed. Following the suggestion of Altonji and Segal (1996), 
we present first-stage GMM estimates using the identity weighting matrix. We 
also performed GMM estimation on a subset of 10 of the original 25 Fama- 
French portfolios, using a set of six size and book-market sorted portfolios pro- 
vided by Fama and French. These six portfolios consist of three size and two 
book-market categories of the same data used to construct the five size and five 
book-market portfolios. Table 8 in the text presents a distance measure for each 
GMM estimation, Dist (the square root of the minimized GMM objective func- 
tion), as well as the joint significance level of all elements in the parameter 
vector b, for each model. The variable Dist is a summary statistic that can be 
used to compare the size of the pricing errors across models; it gives the squared 
distance from the candidate stochastic discount factor and the set of discount 
factors that price the 25 portfolios correctly. If the model is correct, Dist should 
equal zero. 

The table shows that scaling the standard CCAPM does not decrease Dist 
significantly when the weighting matrix is the Hansen-Jagannathan matrix and 
the estimation is run on the full set of 25 portfolios. Furthermore, results (not 
reported) showed that this estimation rejects the hypothesis that Dist = 0 for 
all models, including the Fama-French model. By contrast, when the weighting 
matrix is the identity matrix, the effect of scaling the consumption CAPM is to 
reduce Dist by almost half, and we cannot reject the null hypothesis that the 
distance is zero for the scaled consumption CAPM. Qualitatively identical results 
are produced when we use the Hansen-Jagannathan matrix, but the number of 
portfolios is reduced, either by using a subset of the original 25 portfolios or 
by using the six portfolios. In each case, scaling the CCAPM significantly im- 
proves the model's performance, and we do not reject the hypothesis that the 
pricing errors are zero. Also, the parameters in b are strongly statistically sig- 
nificant for the scaled CCAPM. 

The estimated coefficients in b for the scaled consumption CAPM in the case 
in which estimation was carried out on the full25 portfolios using the identity 
weighting matrix are bo = 0.99, b,, = -26.47, b,,, = -16,076, and b, = 76.71. 
To check whether the GMM estimation produces results that are similar to those 
produced by the Fama-MacBeth methodology, we can convert the b's into A's 
using (5). We obtain for this case (using the same scale as in table 4) 
E[R0,,]= 4.31, A,, = 0.02, A,,, = 0.06, and A, = -0.14. Note that these numbers 
are extremely close to those in row 2 of table 3. Note that estimates of b are 
obtained without making the assumption that the errors are conditionally ho- 
moskedastic, as is the case for the Shanken-corrected Fama-MacBeth standard 
errors. See Jagannathan and Wang (1998) for a derivation of the Fama-MacBeth 
standard errors when conditional heteroskedasticity is present. 
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